Next: <u>Introduction</u>

THE NAS PARALLEL BENCHMARKS

D. H. Bailey[1]This author is an employee of NASA Ames Research Center, E. Barszcz[1], J. T. Barton [1], D. S. Browning[2]This author is an employee of Computer Sciences Corporation. This work is supported through NASA Contract NAS 2-12961., R. L. Carter, L. Dagum[2], R. A. Fatoohi[2], P. O. Frederickson [3]This author is an employee of the Research Institute for Advanced Computer Science (RIACS). This work is supported by the NAS Systems Division via Cooperative Agreement NCC 2-387 between NASA and the Universities Space Research Association., T. A. Lasinski[1], R. S. Schreiber[3], H. D. Simon[2], V. Venkatakrishnan[2] and S. K. Weeratunga[2] NAS Applied Research Branch NASA Ames Research Center, Mail Stop T045-1 Moffett Field, CA 94035

Abstract:

A new set of benchmarks has been developed for the performance evaluation of highly parallel supercomputers. These benchmarks consist of five ``parallel kernel" benchmarks and three ``simulated application" benchmarks. Together they mimic the computation and data movement characteristics of large scale computational fluid dynamics applications.

The principal distinguishing feature of these benchmarks is their `pencil and paper' specification - all details of these benchmarks are specified only algorithmically. In this way many of the difficulties associated with conventional benchmarking approaches on highly parallel systems are avoided.

- Introduction
- Benchmark Rules
 - Definitions
 - o General Rules
 - o Allowable Language Extensions and Library Routines
- The Benchmarks: A Condensed Overview
 - o The Eight Benchmark Problems
 - o The Embarrassingly Parallel Benchmark
- Sample Codes
- Submission of Benchmark Results
- Acknowledgments
- References

Next: <u>Introduction</u>